+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Чему равна вписанная окружность. Как найти радиус окружности: в помощь школьникам

Содержание

Все что нужно знать об окружности

Чему равна вписанная окружность. Как найти радиус окружности: в помощь школьникам

Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим. 2014-09-13

» СТАТЬИ » ПЛАНИМЕТРИЯ » Все, что нужно знать об окружности

Эта статья содержит минимальный набор сведений об окружности, необходимый для успешной сдачи ЕГЭ по математике.

Окружностью называется множество точек, расположенных на одинаковом  расстоянии от данной точки, которая называется центром окружности.

Для любой точки , лежащей на окружности выполняется равенство ( Длина отрезка равна радиусу окружности.

Отрезок, соединяющий две точки окружности называется хордой.

Хорда, проходящая через центр окружности называется диаметром окружности ().

Площадь круга:

Дуга окружности:

Часть окружности, заключенная между двумя ее точками называется дугой окружности. Две точки окружности определяют две дуги. Хорда  стягивает две дуги: и . Равные хорды стягивают равные дуги.

Угол между двумя радиусами называется центральным углом:

Чтобы найти длину дуги , составляем пропорцию:

а) угол дан в градусах:

Отсюда

б) угол дан в радианах:

Отсюда

Диаметр, перпендикулярный хорде, делит эту хорду и дуги, которые она стягивает пополам:

Если  хорды и окружности пересекаются в точке , то произведения отрезков хорд, на которые они делятся точкой равны между собой:

Касательная к окружности.

Прямая, имеющая с окружностью одну общую точку называется касательной к окружности. Прямая, имеющая с окружностью две общие точки называется секущей.

Касательная к окружности перпендикулярна радиусу, проведенному к  точке касания.

Если из данной точки  проведены к окружности две касательные, то отрезки касательных  равны между собой и центр окружности лежит на биссектрисе угла с вершиной в этой точке:

Если из данной точки проведены к окружности касательная и секущая, то квадрат длины отрезка касательной  равен произведению  всего отрезка секущей на его внешнюю часть:

Следствие: произведение всего отрезка одной секущей на его внешнюю часть равно произведению всего отрезка другой секущей на его внешнюю часть:

Углы в окружности.

Градусная мера центрального угла равна градусной мере дуги, на которую он опирается:

∠ ⌣

Угол, вершина которого лежит на окружности, а стороны содержат хорды, называется вписанным угломВписанный угол измеряется половиной дуги, на которую он опирается:

∠∠

Вписанный угол, опирающийся на диаметр, прямой:

∠∠∠

Вписанные углы, опирающиеся на одну дугу, равны:

∠∠∠

Вписанные углы, опирающиеся на одну хорду равны или их сумма равна

∠∠

∠∠∠

Вершины треугольников с заданным основанием и равными углами при вершине лежат на одной окружности:

Угол между двумя хордами (угол с вершиной внутри окружности) равен полусумме угловых величин дуг окружности, заключенных внутри данного угла и внутри вертикального угла.

∠ ∠∠( ⌣ ⌣ )

Угол между двумя секущими (угол с вершиной вне окружности) равен полуразности угловых величин дуг окружности, заключенных внутри угла.

∠ ∠∠( ⌣ ⌣ )

 Вписанная окружность.

Окружность называется вписанной в многоугольник, если она касается его сторон. Центр вписанной окружности лежит в точке пересечения биссектрис углов многоугольника.

Не во всякий многоугольник можно вписать окружность.

Площадь многоугольника, в который вписана окружность можно найти по формуле

,

здесь – полупериметр многоугольника, – радиус вписанной окружности.

Отсюда радиус вписанной окружности равен

Если в выпуклый четырехугольник вписана окружность, то суммы длин противоположных сторон равны. Обратно: если в выпуклом четырехугольнике суммы длин противоположных сторон равны, то в четырехугольник можно вписать окружность:

В любой треугольник можно вписать окружность, притом только одну. Центр вписанной окружности лежит в точке пересечения биссектрис внутренних углов треугольника.

Радиус вписанной окружности равен . Здесь

Описанная окружность.

Окружность называется описанной около многоугольника, если она проходит через все вершины многоугольника. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров сторон многоугольника. Радиус вычисляется как радиус окружности, описанной около треугольника, определенного любыми тремя вершинами данного многоугольника:

Около четырехугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна .

∠+∠=∠+∠

Около любого треугольника можно описать окружность, притом только одну. Ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника:

Радиус описанной окружности вычисляется по формулам:

Где – длины сторон треугольника, – его площадь.

Теорема Птолемея

Во вписанном четырехугольнике произведение диагоналей равно сумме произведений его противоположных сторон:

Источник: https://ege-ok.ru/2014/09/13/vse-chto-nuzhno-znat-ob-okruzhnosti

Опорный конспект 2. Описанные и вписанные окружности – УчительPRO

Чему равна вписанная окружность. Как найти радиус окружности: в помощь школьникам

Наглядная геометрия 9 класс. Опорный конспект 2 Описанные и вписанные окружности

Около любого треугольника можно описать окружность. Она проходит через все вершины треугольника. Вы уже знаете, что точка пересечения серединных перпендикуляров равноудалена от вершин треугольника. Она и является центром описанной окружности.

В любой треугольник можно вписать окружность. Она касается всех сторон треугольника. Вы также знаете, что точка пересечения биссектрис треугольника равноудалена от сторон треугольника. Она и является центром вписанной окружности.

А можно ли описать окружность около любого параллелограмма? Если попробовать это сделать, то окажется, что около параллелограмма можно описать окружность, только если он — прямоугольник. Мы узнаем, каким свойством обладают вписанные и описанные четырехугольники и какие признаки позволяют судить о том, можно ли около данного четырехугольника описать и можно ли в него вписать окружность.

И вдобавок мы познакомимся с одной важной формулой площади треугольника S = рr.

1. Окружность, описанная около треугольника.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Теорема. Вокруг любого треугольника можно описать окружность, и только одну. Ее центр лежит на пересечении серединных перпендикуляров к сторонам треугольника.

Доказательство. Точка пересечения серединных перпендикуляров к сторонам треугольника равноудалена от его вершин (доказано нами в 7 классе). Поэтому она является центром описанной окружности, расстояние от этой точки до любой из вершин равно радиусу.

Если существует еще одна описанная окружность, то ее центр равноудален от всех трех вершин и поэтому совпадает с точкой пересечения серединных перпендикуляров, а радиус совпадает с радиусом первой окружности. Окружности совпадают.

2. Окружность, описанная около прямоугольного треугольника.

Теорема. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, а радиус окружности равен половине гипотенузы.

Доказательство. Мы знаем, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы (доказано нами в 7 классе). Поэтому середина гипотенузы является центром описанной окружности, а ее радиус равен половине гипотенузы, т. е. R = c/2.

3. Окружность, вписанная в треугольник.

Окружность называется вписанной в треугольник, ест она касается всех сторон треугольника.

Теорема. В любой треугольник можно вписать окружность, и только одну. Ее центр лежит на пересечении биссектрис треугольника.

Доказательство. Точка пересечения биссектрис треугольника равноудалена от сторон треугольника (доказано нами в 7 классе). Если из этой точки опустить перпендикуляры на стороны и провести окружность радиусом, равным перпендикуляру, то стороны треугольника будут касаться окружности по признаку касательной.

Если существует еще одна вписанная окружность, то ее центр равноудален от всех трех сторон и поэтому совпадает с точкой пересечения биссектрис, а радиус совпадает с радиусом первой окружности. Окружности совпадают.

4. Формула площади S = рr.

Теорема. Площадь треугольника S = рr, где р — полупериметр треугольника, r — радиус вписанной окружности.

Доказательство. Соединим центр вписанной окружности с вершинами треугольника, стороны которого равны а, b и с. Получим три треугольника, для которых радиусы вписанной окружности, проведенные в точки касания, являются высотами. Площадь данного треугольника равна сумме площадей этих треугольников:

где p — полупериметр треугольника.

Данная формула справедлива для любого многоугольника, в который можно вписать окружность, т. е. для любого описанного многоугольника. Доказательство аналогично.

5. Окружность, вписанная в прямоугольный треугольник.

Теорема. Радиус окружности, вписанной в прямоугольный треугольник, находится по формуле r = (а + b – c)/2.

Доказательство. Проведем радиусы в точки касания. Получим квадрат со стороной r (четырехугольник, у которого все углы прямые и две соседние стороны равны по r) и отрезки катетов, равные r и а – r для катета а, r и b – r для катета b.

Так как отрезки касательных, проведенных из одной точки, к окружности равны, то гипотенуза равна сумме отрезков (a – r) и (b – r). Так как с = (а – r) + (b – r), то r = (а + b – c)/2.

6. Свойство вписанного четырехугольника.

Теорема (свойство вписанного четырехугольника). Если четырехугольник вписан в окружность, то суммы его противоположных углов равны по 180°.

Доказательство. Противоположные углы α и β являются вписанными. Они опираются на дуги, которые дополняют друг друга до окружности. Окружность содержит 360°. Так как вписанный угол равен половине дуги, на которую он опирается, то сумма углов α и β равна 180°.

7. Признак вписанного четырехугольника.

Теорема (признак вписанного четырехугольника). Если сумма противоположных углов четырехугольника равна 180°, то вокруг него можно описать окружность.

Доказательство. Через три вершины четырехугольника всегда можно провести окружность (это вершины некоторого треугольника).

Если четвертая вершина будет лежать внутри окружности или вне ее, то угол при этой вершине будет больше или меньше угла β, по свойству внешнего угла треугольника, т. е. 1 < β < 2.

Тогда сумма противоположных углов этого четырехугольника не будет равна 180°. Поэтому четвертая вершина такого четырехугольника обязана лежать на окружности.

8. Свойство вписанной трапеции.

Теорема. Вписанная трапеция является равнобедренной.

Доказательство. 1-й способ. ∠1 + ∠2 = 180° как внутренние односторонние при параллельных прямых и секущей, ∠3 + ∠2 = 180° по свойству вписанного четырехугольника. Тогда ∠1 = ∠3 и трапеция равнобедренная по признаку равнобедренной трапеции.

2-й способ. Параллельные прямые отсекают равные дуги. Равные дуги стягиваются равными хордами. Поэтому боковые стороны трапеции равны.

9. Свойство описанного четырехугольника.

Теорема (свойство описанного четырехугольника). Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.

Доказательство. Отрезки касательных, проведенных из одной точки к окружности, равны. Обозначим равные отрезки соответственно одной черточкой, двумя, тремя и четырьмя. Убеждаемся, что суммы противоположных сторон равны: Т + А = Н + Я.

10. Признак описанного четырехугольника.

Теорема (признак описанного четырехугольника). Если у четырехугольника суммы противоположных сторон равны, то в него можно вписать окружность.

Доказательство. Пусть окружность касается только трех сторон. Повернув четвертую сторону вокруг вершины так, чтобы она касалась окружности, получим описанный четырехугольник.

Т + А = Н + Я — по свойству описанного четырехугольника,
Т + y = (Н + х) + Я — по условию.

Тогда y = А + х. А это противоречит неравенству треугольника у < А + х. Значит, окружность касается всех четырех сторон заданного четырехугольника.

ЭТО НУЖНО ЗНАТЬ !

Это опорный конспект № 2 по геометрии для 9 класса «Описанные и вписанные окружности». Выберите дальнейшие действия:

Источник: https://uchitel.pro/%D0%BE%D0%BF%D0%BE%D1%80%D0%BD%D1%8B%D0%B9-%D0%BA%D0%BE%D0%BD%D1%81%D0%BF%D0%B5%D0%BA%D1%82-2-%D0%BE%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5-%D0%B8-%D0%B2%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%BD/

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Чему равна вписанная окружность. Как найти радиус окружности: в помощь школьникам

Справочник по математикеГеометрия (Планиметрия)Треугольники

      Напомним определение биссектрисы угла.

      Определение 1. Биссектрисой угла называют луч, делящий угол на две равные части.

      Теорема 1 (Основное свойство биссектрисы угла). Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

      Доказательство. Рассмотрим произвольную точку D, лежащую на биссектрисе угла BAC, и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE, а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Рис. 2

      Доказательство. Рассмотрим произвольную точку D, лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE, а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

      Определение 2. Окружность называют окружностью, вписанной в угол, если она касается касается сторон этого угла.

      Теорема 3. Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

      Доказательство. Пусть точка D – центр окружности, вписанной в угол BAC, а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

      Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности), а гипотенуза AD – общая. Следовательно

AF = AE,

что и требовалось доказать.

      Замечание. Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных, проведенных к окружности из одной точки, равны.

      Напомним определение биссектрисы треугольника.

      Определение 3. Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

      Теорема 4. В любом треугольнике все три биссектрисы пересекаются в одной точке.

      Доказательство. Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC, и обозначим точку их пересечения буквой O (рис. 4).

Рис. 4

      Опустим из точки O перпендикуляры OD, OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC, то в силу теоремы 1 справедливо равенство:

OD = OE,

      Поскольку точка O лежит на биссектрисе угла ACB, то в силу теоремы 1 справедливо равенство:

OD = OF,

      Следовательно, справедливо равенство:

OE = OF,

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC. Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

     Определение 4. Окружностью, вписанной в треугольник, называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности.

Рис. 5

      Следствие. В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

      Формулы, позволяющие найти радиус вписанной в треугольник окружности, удобно представить в виде следующей таблицы.

ФигураРисунокФормулаОбозначения
Произвольный треугольникПосмотреть вывод формулыa, b, c – стороны треугольника,S – площадь,r – радиус вписанной окружности,p – полупериметр.
Посмотреть вывод формулы
Равнобедренный треугольникПосмотреть вывод формулыa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружности
Равносторонний треугольникПосмотреть вывод формулыa – сторона равностороннего треугольника,r – радиус вписанной окружности
Прямоугольный треугольникПосмотреть вывод формулa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружности
Произвольный треугольник
гдеa, b, c – стороны треугольника,S –площадь,r –  радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
гдеa, b, c – стороны треугольника,r – радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
Равнобедренный треугольник
гдеa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружностиПосмотреть вывод формулы
Равносторонний треугольник
гдеa – сторона равностороннего треугольника,r – радиус вписанной окружностиПосмотреть вывод формулы
Прямоугольный треугольник
гдеa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружностиПосмотреть вывод формул
Произвольный треугольник
гдеa, b, c – стороны треугольника,S –площадь,r –  радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
гдеa, b, c – стороны треугольника,r – радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
Равнобедренный треугольник
гдеa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружностиПосмотреть вывод формулы
Равносторонний треугольник
гдеa – сторона равностороннего треугольника,r – радиус вписанной окружностиПосмотреть вывод формулы
Прямоугольный треугольник
гдеa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружностиПосмотреть вывод формулы

Вывод формул для радиуса окружности, вписанной в треугольник

      Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

Рис. 6

      Доказательство. Из формулы

с помощью формулы Герона получаем:

что и требовалось.

      Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Рис. 7

      Доказательство. Поскольку для произвольного треугольника справедлива формула

где

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

      Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Рис. 8

      Доказательство. Поскольку для равнобедренного треугольника справедлива формула

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

      Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a, b – катеты прямоугольного треугольника, c – гипотенуза, r – радиус вписанной окружности.

      Доказательство. Рассмотрим рисунок 9.

Рис. 9

      Поскольку четырёхугольник CDOF является прямоугольникомпрямоугольником, у которого соседние стороны DO и OF равны, то этот прямоугольник – квадратквадрат. Следовательно,

СD = СF= r,

      В силу теоремы 3 справедливы равенства

      Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник: https://www.resolventa.ru/uslugi/uslugischoolrost.htm

Радиусы описанной и вписанной окружностей в квадрат

Чему равна вписанная окружность. Как найти радиус окружности: в помощь школьникам

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. У квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O.

Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°.

Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Для наглядности приведем численный пример нахождения величины радиуса вписанной окружности в квадрат со стороной равной 13 см. В данном случае значение вписанного радиуса будет равно:

Легко решить и обратную задачу.

Предположим, что известен радиус вписанной окружности – 9 см, тогда анализируя пример нахождения величины радиуса вписанной окружности в квадрат, можно найти сторону квадрата:
Находим из этого уравнения неизвестное значение: .

Окружность описанная около квадрата

Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
, отсюда Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы.

Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата.

Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:

Численный пример нахождения величины радиуса описанной окружности около квадрата будет таким.
Предположим, что диагональ квадрата равна , тогда:

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности

Рассмотрим пример
Задача: радиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата.

Дано:

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса.

Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h .

Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h.

Из подобия этих конусов получаем:
Выразим x:

Тогда объем усеченного конуса можно выразить:
Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конусаРадиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса.

Объем усеченного конуса вычисляется по формуле:
Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения.

Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду.Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность.
Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен:

Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды.
Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен
V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды.
Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле:
Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше
Поэтому утверждение,что объем описанной пирамиды не больше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен

Два полученных неравенства равны при любом n.

Если то
Тогда из первого неравенства следует, что V≥
Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конусаНайти объем конуса, если его радиус основания равен 3 см, а образующая 5 см.

Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса.Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 5

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил.

Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой.

Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20.
Читать далее

Таблица кубов натуральных чисел от 1 до 100
Читать далее

Таблица факториалов от 1 до 40
Читать далее

Page 6

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Источник: https://2mb.ru/matematika/geometriya/radiusy-opisannoj-i-vpisannoj-okruzhnosti-v-kvadrat/

Задания №6. Задачи на комбинацию окружности и треугольника

Чему равна вписанная окружность. Как найти радиус окружности: в помощь школьникам

Елена Репина 2013-07-28 2016-06-20  

Задача 1

Площадь треугольника равна 800, а радиус вписанной окружности равен 16. Найдите периметр этого треугольника.

Решение: + показать

Задача проста, если знать формулу , где – радиус вписанной в треугольник окружности,   – полупериметр треугольника.

Тогда

Ответ: 100. 

Задача 2

Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна 66.

Решение: + показать

Радиус вписанной окружности в правильный треугольник – есть высоты (), так в правильном треугольнике высоты совпадают с медианами, а медианы в точке пересечения делятся в отношении 2:1, считая от вершины.

Итак,

Ответ: 22. 

Задача 3

Сторона правильного треугольника равна . Найдите радиус окружности, вписанной в этот треугольник.

Решение: + показать

Из предыдущей задачи мы знаем, что радиус вписанной окружности есть где – высота, медиана.

Из треугольника

Тогда

Ответ: 19. 

Задача 4

В треугольнике ABC  . Найдите радиус вписанной окружности.

Решение: + показать

Найдем гипотенузу по т. Пифагора:

Найдем площадь и периметр треугольника, чтобы воспользоваться затем формулой :

Тогда

Ответ: 1. 

Задача 5

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 11. Найдите гипотенузу c этого треугольника. В ответе укажите .

Решение: + показать

Воспользуемся формулой .

Пусть

Тогда

Далее, по т. Пифагора

Значит,

Итак, возвращаемся к формуле :

Так как по условию , то

Так как гипотенуза c  () есть , то

Значит,

Ответ: 22. 

Задача 6.

Боковые стороны равнобедренного треугольника равны 181, основание равно 38. Найдите радиус вписанной окружности.

Решение: + показать

Воспользуемся формулой Герона: , где – полупериметр, –  стороны треугольника.

Ответ: 17,1. 

Задача 7.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 13 и 5, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

Решение: + показать

По свойству отрезков касательных, проведенных из одной точки к окружности, а поскольку   – середина , то

Ответ: 46. 

Задача 8.

К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 10, 18, 33. Найдите периметр данного треугольника.

Решение: + показать

Опять же, по свойству отрезков касательных, имеем: и т.д.

Значит,

Суммируем построчно последние три равенства:

Ответ: 61. 

Задача 1.

Найдите радиус окружности, описанной около прямоугольного треугольника , если стороны квадратных клеток равны 1.

Решение: + показать

В прямоугольном треугольнике  центр описанной окружности – середина гипотенузы. Радиус описаной окружности равен половине гипотенузы.

Ответ: 2,5. 

Задача 2.

Боковые стороны равнобедренного треугольника равны 50, основание равно 60. Найдите радиус описанной окружности этого треугольника.

Решение: + показать

Воспользуемся следующей формулой:

Площадь будем искать по формуле Герона:

Тогда  

Ответ: 31,25. 

Задача 3.

Сторона AB треугольника ABC равна 28. Противолежащий ей угол C равен 150˚. Найдите радиус окружности, описанной около этого треугольника.

Решение: + показать

Согласно т. Синусов

Ответ: 28. 

Задача 4.

Угол C треугольника ABC, вписанного в окружность радиуса 47, равен 30˚. Найдите сторону AB этого треугольника.

Решение: + показать

Задачу можно решить способом, которым решали предыдущую задачу (использую теорему синусов).

Рассмотрим другой способ решения:

Треугольник – равносторонний, так как  центральный угол равен (ведь он соответствующий для вписанного угла, равного 30˚) и как радиусы (следовательно как равные углы при основании равнобедренного треугольника).

Стало быть,

Ответ: 47. 

Задача 5.

В треугольнике ABC BC, угол C равен 90°. Радиус описанной окружности этого треугольника равен 17,5. Найдите AC.

Решение: + показать

В прямоугольном треугольнике гипотенуза – диаметр описанной окружности.

Значит,

По теореме Пифагора

Ответ: 30. 

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.